
Fundamental Concepts of
Programming Languages

Data Types
Lecture 07

conf. dr. ing. Ciprian-Bogdan Chirila

November 8, 2022

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 1 / 54

Lecture outline

Predefined types

Programmer defined types

Scalar types
Structured data types

Cartesian product
Finite projection
Sequence
Recurrence
Variable reunions
Sets

Pointer type

Type compatibility

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 2 / 54

Data types

A set of objects and
A set of operations to

Create
Destroy
Modify

Predefined types
a certain set of objects specified at language definition

Unitary construction of objects in advanced PLs
structure
operations

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 3 / 54

Predefined types

Data Types
1 Predefined types
2 Programmer defined types
3 Scalar types
4 Structured data types

Cartesian product
Finite projection
Sequence
Recurrence
Variable reunions
Sets
Dictionaries

5 Pointer type
6 Type compatibility

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 4 / 54

Predefined types

Predefined types

The base of the typing system of a language

Reflects the system functioning at the hardware level

Values and operations related to low level data and
machine operations

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 5 / 54

Predefined types

Predefined types

Numerical base types
C, C++: char, short, int, long, float, double, long double
Java: byte, short, int, long, float, double
C#: short, ushort, int, uint, long, ulong, float, double,
decimal
Python: int, float, complex

Mathematical operations
+,-,*,/
For integers and reals
Polymorphic operators - overloaded

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 6 / 54

Predefined types

Predefined types

boolean enumeration type with values
true
false

bool in Algol 68, C++, C#

boolean in Pascal, Java, Ada

char in Algol 68, Java, Pascal, C#

character in Ada

ASCII
EBCDIC

Extended Binary Coded Decimal Interchange Code

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 7 / 54

Programmer defined types

Data Types
1 Predefined types
2 Programmer defined types
3 Scalar types
4 Structured data types

Cartesian product
Finite projection
Sequence
Recurrence
Variable reunions
Sets
Dictionaries

5 Pointer type
6 Type compatibility

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 8 / 54

Programmer defined types

Programmer defined types

The most powerful feature of a typing system is to
create new types
Named

type tab=array[1..10] of integer;
typedef struct {int x; int y;} tpoint;

Anonymous
var t:array[1..10] of integer;
struct {int x; int y;} p1, p2;

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 9 / 54

Scalar types

Data Types
1 Predefined types
2 Programmer defined types
3 Scalar types
4 Structured data types

Cartesian product
Finite projection
Sequence
Recurrence
Variable reunions
Sets
Dictionaries

5 Pointer type
6 Type compatibility

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 10 / 54

Scalar types

Scalar types

Scalar type objects are simple constants which can
not be further decomposed

Integer, real, character, boolean are scalar types

The programmer can define its own scalar types

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 11 / 54

Scalar types

Enumeration type

the user specifies in a list the type values

type days=(Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday);

started in Pascal

present in the majority of the PLs

Java, C#: enum Level {LOW, MEDIUM, HIGH}

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 12 / 54

Scalar types

Other scalar types

Important from the portability point of view
in Ada

type eps is digits 10;
a floating point number with a minimum number of 10
significant decimals

The precision will be preserved independently of the
platform

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 13 / 54

Scalar types

Subdomains

In Pascal
type working day=Monday..Friday;
small caps=’a’..’z’;
index=0..90;

In Ada
type eps 1 is new eps range-1.0..1.0;

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 14 / 54

Structured data types

Data Types
1 Predefined types
2 Programmer defined types
3 Scalar types
4 Structured data types

Cartesian product
Finite projection
Sequence
Recurrence
Variable reunions
Sets
Dictionaries

5 Pointer type
6 Type compatibility

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 15 / 54

Structured data types

Structured data types

PLs offer mechanisms for description and
manipulation of data structures containing

scalars
other structures

Structuring mechanism
features allowing to build structures starting from its
components

Selection mechanism
features allowing access to a structure component

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 16 / 54

Structured data types Cartesian product

Cartesian product

Structured objects
Composed out of a fixed number of components
Components are of different types

The type of the structured objects is the Cartesian
product of the sets corresponding to components

If the types of the components are represented by
sets C1,C2,C3, . . . ,Cn

Each element of structured type will be:
T = C1xC2x . . . xCn

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 17 / 54

Structured data types Cartesian product

Cartesian product

Named also
Articles
Structures

In Pascal and Ada - record
In Algol 68 and C – structure

To describe the type of each component

To select a component means to specify the object
and the name of the selected field

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 18 / 54

Structured data types Cartesian product

Cartesian product example in Ada

type complex is

record

re,im:real;

end record;

c:complex;

c.re:=1;

c.im:=0;

c:=(1,0);

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 19 / 54

Structured data types Finite projection

Finite projection

is a function defined on IT set with values on ET set

IT – index type

ET – element type

var a:array[0..99] of char;

char a[100];

it is a projection of 0,1,2,3,. . . ,99 set on the
characters set

the array components called elements are selected
through the indexing mechanism

to the array name we add an index value to select a
certain element

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 20 / 54

Structured data types Finite projection

Finite projection

a[k]
selects the k index element from array a
can be regarded as a application of function a with
argument k resulting the value of the element

In Algol, Ada, Python
Selection can be made on a slice not just a single element
a[10..19]=(0,1,2,3,4,5,6,7,8,9);
thislist = [”apple”, ”banana”, ”cherry”, ”orange”,
”kiwi”, ”melon”, ”mango”]
thislist[2:5]
index 2 is included, index 5 is not included

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 21 / 54

Structured data types Finite projection

The key moment of binding the set of
indexes

Fixed at compile time
Writing the code which establishes the index set
Can not be modified during program execution
It is the case for Fortran, C, C++, Pascal

Fixed at run time
In the moment of array object creation
The size can be unknown at compile time
Can depend on program variables
It is the case for Algol60, Basic or Ada
In languages with dynamic memory allocation like C
pointers are used for dynamic arrays access

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 22 / 54

Structured data types Finite projection

The key moment of binding the set of
indexes

Flexible at run time
The index set can be modified
The size of the array can be modified
It is the case for Snobol4 and Algol68

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 23 / 54

Structured data types Sequence

Sequence

Is a structure formed out of a random number of
components of the same type

Anytime a component can be added

Virtually unlimited
In PLs

Strings of characters
Sequential file

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 24 / 54

Structured data types Sequence

Sequence

For strings
In PL/I, Ada, Basic, Pascal
When declaring a string the maximum length must be
known
Operations

PL dependent

Catenation

First character selection

Last character selection

Substring selection

etc.

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 25 / 54

Structured data types Recurrence

Recursion

A type T is recursive if one of its components is of
type T
Typical examples are

Lists
Trees

The objects can have arbitrary shapes and sizes

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 26 / 54

Structured data types Recurrence

Recursion

// pseudocode

type node=record

info:info_type;

left, right : ^node;

end;

// C

struct node

{

info_type info;

struct node *left, *right;

}

// Java

class Node

{

private InfoType info;

private Node left, right;

}

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 27 / 54

Structured data types Recurrence

Recursion in practice

pointers must be used

a recursive object of type T must have a reference
of a T object

not an object itself

C, C++, Java, C#, Pascal, Ada, Algol 68

In Lisp lists and trees do not need pointers

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 28 / 54

Structured data types Variable reunions

Variable reunions

Allow specifying structures which can have several
alternatives

The set of all possible structures represents the
reunion of alternative sets

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 29 / 54

Structured data types Variable reunions

Variable reunions in C

union

{

float radius;

float rectangle_sides[2];

float triangle_sides[3];

}shape;

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 30 / 54

Structured data types Variable reunions

Variable reunions

at one time shape variable can have only:
float radius or
two float array or
three float array

in an article all fields coexist

in a union there will be only one of the alternative
fields

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 31 / 54

Structured data types Variable reunions

Variable reunions

More evolved unions are in Pascal and Ada

The union is a part of an article with variants

type figure=(circle, triangle, rectangle);

shape=record

length,area : real;

case shape : figure of

circle: (radius:real);

rectangle: (rectangle_sides:array[1..2] of real);

triangle: (triangle_sides:array[1..3] of real);

end

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 32 / 54

Structured data types Variable reunions

Variable reunions

Are dangerous

The correct variant must be used

All responsibility is left on programmers shoulders
(C)

No compile time checking possible

No runtime checking possible

Ada and Pascal cases will be detailed later

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 33 / 54

Structured data types Sets

Sets

T is the base type

Variables of set(T) can have as value any subset
generated by values of T including void set
Operations

Reunion
Intersection
Difference
Inclusion tests
belonging tests

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 34 / 54

Structured data types Sets

Sets

Pascal, Python
Has a set type
x = {”apple”, ”banana”, ”cherry”}

When no such mechanism is present
Can be implemented by the programmer by

Boolean arrays

Bit arrays

Lists

Trees

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 35 / 54

Structured data types Sets

Sequence types

Python: list, tuple, range

list = ["apple", "banana", "cherry"]

tuple = ("apple", "banana", "cherry")

range = range(6)

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 36 / 54

Structured data types Dictionaries

Dictionary types (Python)

x = {"name" : "John", "age" : 36}

thisdict =

{

"brand": "Ford",

"electric": False,

"year": 1964,

"colors": ["red", "white", "blue"]

}

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 37 / 54

Structured data types Dictionaries

Dictionary types (JavaScript)

var dict = new Object();

// or the shorthand way

var dict = {};

var dict =

{

FirstName: "Chris",

"one": 1,

1: "some value"

};

// using the Indexer

dict["one"] = 1;

dict[1] = "one";

// add new or update property

dict["Age"] = 42;

// direct property by name

// because it’s a dynamic language

dict.FirstName = "Chris";

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 38 / 54

Pointer type

Data Types
1 Predefined types
2 Programmer defined types
3 Scalar types
4 Structured data types

Cartesian product
Finite projection
Sequence
Recurrence
Variable reunions
Sets
Dictionaries

5 Pointer type
6 Type compatibility

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 39 / 54

Pointer type

The pointer type

A pointer is a reference to an object

The usual mean to implement recursive data
structures

In C the only way of transmitting parameters by
address

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 40 / 54

Pointer type

Problems with pointers

Type compatibility violations

Pseudonyms

False references

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 41 / 54

Type compatibility

Data Types
1 Predefined types
2 Programmer defined types
3 Scalar types
4 Structured data types

Cartesian product
Finite projection
Sequence
Recurrence
Variable reunions
Sets
Dictionaries

5 Pointer type
6 Type compatibility

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 42 / 54

Type compatibility

Type compatibility violations

in PL/I a pointer variable can refer any object;

at compile time is impossible to know the object
type and to do appropriate type checking;

runtime checking is possible but they are expensive;

in Pascal, Ada pointers have assigned the object
types they may refer;

in C we have the void* generic pointers;

in C++ we have smart pointers: unique ptr,
shared ptr, weak ptr;

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 43 / 54

Type compatibility

Pseudonyms

the very same object is referred by several names;

their presence in the code affects its readability;

var a,b:^t;

a:=new(t);

b:=a;

//a and b are pseudonyms

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 44 / 54

Type compatibility

False references

when a pointer refers an object no longer alive

its access is an error

var a,b:^t;

a:=new(t);

b:=a;

dispose(a);

//b is a false reference even a is set to nil

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 45 / 54

Type compatibility

False references in C

int *p;

void f()

{

int x;

p=&x;

}

...

f();

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 46 / 54

Type compatibility

Type compatibility

T1 and T2 are compatible types if
A value of type T1 can be assigned to a variable of type
T2 (and vice versa)
A parameter of type T1 corresponds to an actual of type
T2 (and vice versa)

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 47 / 54

Type compatibility

Example

type

t=array[1..100] of integer;

t1=array[1..100] of integer;

t2=t1;

var

a,b:array[1..100] of integer;

c:t;

d:t;

e,f:t1;

g:t2;

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 48 / 54

Type compatibility

Theoretical type compatibilities

Name equivalence

Structural equivalence

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 49 / 54

Type compatibility

Name equivalence

when 2 variables
declared together or
using the same name for the type

In the example
a and b are compatible
c and d are compatible
e and f are compatible
a or b with c or d are not compatible

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 50 / 54

Type compatibility

Structural equivalence

two variables have compatible types if they have the
same structure
as type checking we will replace the name of the
type by its definition

recursive process
ends when all user defined type are replaced

Two types are compatible if they have the same
description
In our example

a, b, c, d, e, f, g are all compatible

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 51 / 54

Type compatibility

Comparison

Structural equivalence
simplicity of the implementation

Name equivalence
complex operations in order to determine type
compatibility;
allows refined abstractions;
type

price=integer;

students_no=integer;

cost:price;

effective:student_no;

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 52 / 54

Type compatibility

Comparison

variables cost and effective
structurally equivalent
assigning values from cost to effective or viceversa is a
semantic error

Structural equivalence
Algol 68
C - structure and union – different types even they have
identical structures

Name equivalence
Ada
Pascal - equivalence not specified, implementation
dependent

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 53 / 54

Type compatibility

Bibliography

1 Brian Kernighan, Dennis Ritchie, C Programming
Language, second edition, Prentice Hall, 1978.

2 Carlo Ghezzi, Mehdi Jarayeri – Programming
Languages, John Wiley, 1987.

3 Horia Ciocarlie – Universul limbajelor de
programare, editia 2-a, editura Orizonturi
Universitare, Timisoara, 2013.

conf. dr. ing. Ciprian-Bogdan Chirila Fundamental Concepts of Programming Languages November 8, 2022 54 / 54

	Predefined types
	Programmer defined types
	Scalar types
	Structured data types
	Cartesian product
	Finite projection
	Sequence
	Recurrence
	Variable reunions
	Sets
	Dictionaries

	Pointer type
	Type compatibility

